
职称:助理教授 研究员
导师类别:博士生导师
研究所:信息与通信研究所
研究领域:光电子集成器件,拓扑光子学,非厄米光子学,拓扑光子晶体激光器
办公电话:13311358426
电子邮件:xuefan_yin@pku.edu.cn
教育背景:
2015/09 - 2020/08 北京大学 信息科学技术学院 区域通信网与新型光通信国家重点实验室 博士
导师:李正斌 教授 彭超 副教授 研究方向:拓扑光电子集成器件
2017/09 - 2018/08 美国麻省理工学院 物理学系 访问博士研究生
合作导师:Marin Soljacic 教授 研究方向:拓扑光子晶体器件
2011/09 - 2015/07 北京大学 信息科学技术学院 电子学系 通信与信息系统方向 理学学士
工作履历/科研教育经历:
2025/02 - 当前 北京大学 电子学院 助理教授 研究员 博士生导师
2022/12 - 2023/11 日本京都大学 工学院 博士后
合作导师:Susumu Noda 教授 研究方向:拓扑光子晶体激光器
2020/11 - 2022/11 日本京都大学 工学院 JSPS外国人特别研究员
合作导师:Susumu Noda 教授 研究方向:拓扑光子晶体激光器
研究领域:光电子集成器件,拓扑光子学,非厄米光子学,拓扑光子晶体激光器
研究梗概:运用拓扑光子学、非厄米光子学等方法提升光子集成关键器件性能
主要研究内容:博士期间:拓扑调控光子晶体平板定向辐射;博士后期间:基于单向辐射态的面发射激光器优化研究
主持项目:
l JSPS博士后项目(202104 ~ 202303):
n Study on unidirectional-emitting photonic-crystal lasers based on topological photonics (21F20356)
u The Japan Society for the Promotion of Science, Grant-in-Aid for JSPS Fellows
代表性研究成果:
1. 光子晶体辐射拓扑基本性质研究
n 发展了诠释连续区光子晶体模式的解析理论,澄清了多重偶然简并态的形成机理;建立了计算光子晶体拓扑性质的解析方法,提出了广义拓扑荷概念
论文:Yin X, Liang Y, Ni L, et al. Physical Review B, 2017, 96(7): 075111.(一作)
Yin X, Inoue T, Peng C, et al. Nanophotonics, 2025, 14(1): 95-105(一作)
2. 拓扑荷辐射调控基本原理研究
n 阐明了拓扑荷与光辐射特性的对应关系;合作实现了拓扑保护的极高Q值谐振态,成为拓扑调控辐射的范例
论文:Yin X, Peng C. Photonics Research, 2020, 8(11): B25-B38.(一作)
Jin J, Yin X, Ni L, Peng C, et al. Nature, 2019, 574(7779): 501-504.(二作、ESI高引)
Chen Z, Yin X, Jin J, Zheng Z, et al. Science Bulletin, 2022, 67(4): 359-366. (二作、ESI 高引)
3. 拓扑保护定向辐射机理研究
n 从拓扑光子学观点出发,提出了拓扑荷分裂再合并机理,在光子晶体平板上实现了单向辐射态
论文:Yin X, Jin J, Soljačić M, et al. Nature, 2020, 580(7804): 467-471.(一作、ESI高引)
4. 单向辐射拓扑光子晶体器件研究
n 提出带间耦合机理实现单向辐射态的系统性方法;合作实现多项单向辐射光子晶体器件研发,包括单向光栅耦合器、单面辐射全通/平坦相移器等等
论文:Yin X, Inoue T, Peng C, et al. Physical Review Letter, 2023, 130(5): 056401.(一作)
Wang H, Zuo Y, Yin X; Chen Z, et al. Science Advance, 2024, 10(12).
Zhang Z, Yin X, et al. Nanophotonics, 2021, 10(18): 4467-4475.
5. 非厄米拓扑性质直接测量方法研究
n 建立了“体拓扑-辐射拓扑对应关系”,实现了体系拓扑性质的直接观测;定量表征了本征态贝利曲率以及谷-陈数
论文:Yin X, Chen Y, Zhang X, et al. Nature Communication, 2025, 16: 2796(一作)
代表性学术论著:
[1] Yin X, Jin J, Soljačić M, Peng C*, Zhen B. Observation of topologically enabled unidirectional guided resonances. Nature, 2020, 580(7804): 467-471.
[2] Yin X, Inoue T, Peng C*, Noda S*, Topological Unidirectional Guided Resonances Emerged from Interband Coupling. Physical Review Letter, 2023, 130(5): 056401
[3] Jin J, Yin X, Ni L, Soljačić M, Zhen B*, Peng C. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering. Nature, 2019, 574(7779): 501-504.
[4] Yin X, Chen Y, Zhang X. et al. Observation of Berry curvature in non-Hermitian system from far-field radiation. Nat Communication, 2025, 16: 2796.
[5] Yin X, Inoue T, Peng C, Noda S, Origins and conservation of topological polarization defects in resonant photonic-crystal diffraction. Nanophotonics, 2025, 14(1): 95-105.
[6] Yin X, Peng C*. Manipulating light radiation from a topological perspective. Photonics Research, 2020, 8(11): B25-B38.
[7] Yin X, Liang Y, Ni L, Wang Z, Peng C*, Li Z, Analytical study of mode degeneracy in non-Hermitian photonic crystals with TM-like polarization. Physical Review B, 2017, 96(7): 075111.
其他论文
[8] Qian Z, Yin X, Zhou X, Wang F, Chen Y, Peng C. Chiral spontaneous emission propagation based on a honeycomb photonic crystal slab. Physical Review A, 2024, 109(6): 063504
[9] Wang H, Zuo Y, Yin X, Chen Z, Zhang Z, Wang F, Hu Y, Zhang Y, Peng C*, Ultra-low-loss optical interconnect enabled by topological unidirectional guided resonance. Science Advance, 2024, 10(12)
[10] Chen Z, Yin X, Li P, Zheng Z, Zhang Z, Wang F, Peng C*. Analytical theory of finite-size photonic crystal slabs near the band edge. Optics Express, 2022, 30(9): 14033-14047.
[11] Wang F, Yin X, Zhang Z, Chen Z, Wang H, Li P, Hu Y, Zhou X, Peng C*. Fundamentals and Applications of Topological Polarization Singularities. Frontiers in Physics, 2022: 198.
[12] Zhang Z, Wang F, Wang H, Hu Y, Yin X, Hu W, Peng C*. All-pass phase shifting enabled by symmetric topological unidirectional guided resonances. Optics Letters, 2022, 47(11): 2875-2878.
[13] Price H*, Chong Y*, Khanikaev A*, ..., Yin X, Peng C, Ozawa T, Blanco-Redondo A. Roadmap on topological photonics. Journal of Physics: Photonics, 2022, 4(3): 032501.
[14] Chen Z, Yin X, Jin J, Zheng Z, Zhang Z, Wang F, He L, Zhen B, Peng C*. Observation of miniaturized bound states in the continuum with ultra-high quality factors. Science Bulletin, 2022, 67(4): 359-366.
[15] Zhang Z,Yin X, Chen Z, Wang F, Hu W, Peng C. Observation of intensity flattened phase shifting enabled by unidirectional guided resonance[J]. Nanophotonics, 2021, 10(18): 4467-4475.
[16] Lv J, Chen Z, Yin X, Zhang Z, Hu W, Peng C*. High-sensitive refractive index sensing enabled by topological charge evolution. IEEE Photonics Journal, 2020, 12(5): 1-10.
[17] Lv J, Yin X, Jin J, Zhang H, Zhao C, Peng C*, Hu W. Demonstration of a thermo-optic phase shifter by utilizing high-Q resonance in high-index-contrast grating. Optics Letters, 2018, 43(4): 827-830.
[18] Wang Z, Liang Y*, Yin X, Peng C*, Hu W, Faist J. Analytical coupled-wave model for photonic crystal surface-emitting quantum cascade lasers. Optics Express, 2017, 25(10): 11997-12007.
[19] Jin J, Yin X, Ni L, Soljačić M, Zhen B, Peng C*. Topological consequence of merging multiple bound states in the continuum, CLEO: Applications and Technology. Optical Society of America, 2019: JTh5C. 7.
[20] Liang Y*, Wang Z, Yin X, Peng C, Hu W, Faist J. Design of Dirac-point photonic crystal quantum cascade lasers, CLEO: Science and Innovations. Optical Society of America, 2017: JTu5A. 112.
[21] Wang Z, Zhang H, Jin J, Yin X, Lv J, Peng C*, Hu W. High-Q Resonance Implementation with Mini-scale High-index-contrast Grating on Silicon-on-insulator, Asia Communications and Photonics Conference. Optical Society of America, 2016: AS3F. 3.