蔡雪松

职称:研究员、预聘副教授

导师类别:博士生导师

研究所:信息与通信研究所

研究领域:无线通信

办公电话:18600750560

电子邮件:xuesong.cai[at]pku.edu.cn

教育背景:

(1) 2013-09 至 2018-03, 同济大学, 控制科学与工程, 博士

(2) 2009-09 至 2013-07, 同济大学, 电子科学与技术, 学士

工作履历/科研教育经历:

  蔡雪松,北京大学电子学院研究员、博士生导师,博雅青年学者,未名学者,玛丽居里学者。分别于 2013 年和 2018 年在同济大学获得学士和博士学位。2018 至 2024 年间在丹麦奥尔堡大学、丹麦诺基亚贝尔实验室和瑞典隆德大学进行博士后研究并相继担任隆德大学助理教授和副教授职位。2025 年1月加入北京大学电子学院。

   主要研究领域为无线电波传播特征建模理论、方法及其应用,涵盖无线信道测量仪开发、无线信道测量、高精度参数估计、无线信道建模、空口测试、资源优化以及基于无线多径的感知和定位等。至今发表 80 余篇高水平文章、2 项书籍章节、3 项行业白皮书和 5 项授权专利,并实现 1 项专利转让。获得过多项享有盛誉的国际资助,曾主持由欧盟玛丽居里行动计划、瑞典研究理事会、瑞典信息技术卓越中心、隆德皇家协会和克拉福德基金会等资助的多项科研项目,总经费约合 1500 万元人民币。

   获得的荣誉包括国家博士生奖学金、上海市优秀博士毕业生、首届全国博士后青年科技人才扬子江论坛学术论文展示三等奖、玛丽居里卓越勋章、玛丽居里学者、中兴蓝剑未来领袖计划(入选)和华为天才计划(入选)、瓦伦堡青年院士(Wallenberg Academy Fellows)提名、ICWMC 2021 最佳论文、VTC2024-Fall 最佳学生论文(主导师)等。瑞典初创公司 Waveium(可视化无线覆盖)联合创始人之一。担任 IEEE 高级会员、IEEE 天线与传播协会青年专业大使、IEEE P1944 信道标准专家组成员、欧洲通信和网络协会(EURACON)代表大会北欧区代表、欧洲无缝包容性互动智能无线电通信(COST INTERACT)管理委员会替补成员、IEEE 车辆技术协会传播委员会分会主席、玛丽居里瑞典分会主席,知名期刊 IEEE Transactions on Vehicular Technology、IEEE Antennas and Wireless Propagation Letters 和 IET Communications 编委,以及 IEEE Open Journal of Antennas and Propagation 和 Radio Science 的客座编委。

主要研究领域:无线电波传播特征建模理论、方法及应用,无线多径感知定位,超大规模MIMO,通信感知一体化,多模态通信感知智能融合。

获奖情况:

1.IEEE秋季车辆技术会议最佳学生论文奖(主导师),2024

2.欧洲天线与传播会议最佳论文提名奖,2024

3.国际天线和传播会议最佳论文提名奖,2024

4.IEEE天线与传播Ulrich L. Rohde创新会议论文提名奖,2022

5.国家级青年人才,2023

6.欧盟玛丽居里学者,2022

7.华为天才计划, 2021

8.IMT 2020 无线通信人工智能大赛,一等奖,2021

9.第十七届无线与移动通信国际会议最佳论文奖(第一作者),2021

10.卓越勋章,欧盟玛丽居里行动计划,2019

11.上海市优秀毕业生,2018

12.中兴蓝剑计划,2017

13.同济大学百十周年优秀学生,2017

14.同济大学优秀学生,2016

15.国家博士生奖学金,2016

学术兼职:

1.IEEE天线与传播协会青年专业大使

2.IEEE P1944 信道标准专家组成员

3.IEEE车辆技术协会传播委员会分会主席

4.玛丽居里瑞典分会主席

5.欧洲通信和网络协会(EURACON)代表大会北欧区代表

6.欧洲无缝包容性互动智能无线电通信(COST INTERACT)管理委员会替补成员

7.编辑(Associate Editor), IEEE Transactions on Vehicular Technology

8.编辑(Associate Editor), IEEE Antennas and Wireless Propagation Letters

9.编辑(Associate Editor), IET Communications

10.客座编辑(Guest Editor), IEEE Open Journal of Antennas and Propagation

11.客座编辑(Guest Editor), Radio Science

代表性学术论著:

[1] M. Sandra, C. Nelson, X. Li, X. Cai*, F. Tufvesson, and A. J. Johansson, “A wideband distributed massive MIMO channel sounder for communication and sensing,” IEEE Transactions on Antennas and Propagation (early access), pp. 1–1, 2025.

[2] X. Cai*, E. L. Bengtsson, O. Edfors, and F. Tufvesson, “A switched array sounder for dynamic millimeter-wave channel characterization: Design, implementation, and measurements,” IEEE Transactions on Antennas and Propagation, vol. 72, no. 7, pp. 5985–5999, 2024.

[3] A. Al-Ameri, J. Sanchez, F. Tufvesson, and X. Cai*(主导师), “A fast rotating-mirror sounder for dynamic millimeter-wave channel characterization (最佳学生论文奖),” in IEEE 100th Vehicular Technology Conference (VTC2024-Fall), 2024, pp. 1–5.

[4] X. Cai*, M. Zhu, A. Fedorov, and F. Tufvesson, “Enhanced effective aperture distribution function for characterizing large-scale antenna arrays,” IEEE Transactions on Antennas and Propagation, vol. 71, no. 8, pp. 6869–6877, 2023.

[5] A. Al-Ameri, J. Park, J. Sanchez, X. Cai, and F. Tufvesson, “A hybrid antenna switching scheme for dynamic channel sounding,” in IEEE 97th Vehicular Technology Conference (VTC2023-Spring), 2023, pp. 1–6.

[6] J. Sanchez, A. Al-Ameri, F. Tufvesson, and X. Cai*, “Low-complexity near-optimal switching schemes for dynamic channel sounding,” submitted to IEEE Transactions on Wireless Communications, 2025.

[7] A. W. Mbugua, W. Fan, K. Olesen, X. Cai, and G. F. Pedersen, “Phase-compensated optical fiber-based ultrawideband channel sounder,” IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 2, pp. 636–647, 2020.

[8] X. Cai, J. Rodríguez-Piñeiro, X. Yin, N. Wang, B. Ai, G. F. Pedersen, and A. P. Yuste,“An empirical air-to-ground channel model based on passive measurements in LTE,” IEEE Transactions on Vehicular Technology, vol. 68, no. 2, pp. 1140–1154, 2019.

[9] Y. Liu, L. Wu*, X. Cai*, and M. R. Bhavani Shankar, “Graph-based multi-bounce modeling and channel parameter estimation for indoor sensing,” IEEE Transactions on Wireless Communications (early access), pp. 1–1, 2025.

[10] H. Huang, M. F. Keskin, H. Wymeersch, X. Cai, L. Wu, J. Thunberg, and F. Tufvesson, “Hybrid precoder design for angle-of-departure estimation with limited-resolution phase shifters,” IEEE Transactions on Communications (early access), pp. 1–1, 2024.

[11] X. Cai*, T. Izydorczyk, J. Rodríguez-Piñeiro, I. Z. Kovács, J. Wigard, F. M. L. Tavares, and P. E. Mogensen, “Empirical low-altitude air-to-ground spatial channel characterization for cellular networks connectivity,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 10, pp. 2975–2991, 2021.

[12] X. Cai, W. Fan, X. Yin, and G. F. Pedersen, “Trajectory-aided maximum-likelihood algorithm for channel parameter estimation in ultrawideband large-scale arrays,” IEEE Transactions on Antennas and Propagation, vol. 68, no. 10, pp. 7131–7143, 2020.

[13] X. Cai and W. Fan, “A complexity-efficient high resolution propagation parameter estimation algorithm for ultra-wideband large-scale uniform circular array,” IEEE Transactions on Communications, vol. 67, no. 8, pp. 5862–5874, 2019.

[14] Y. Xu, M. Sandra, X. Cai, S. Willhammar, and F. Tufvesson, “Characterization of nonwide-sense stationarity for distributed massive MIMO channels (最佳学生论文提名奖),” in 19th European Conference on Antennas and Propagation (EuCAP), 2025, pp. 1–5.

[15] Z. Huang, L. Bai, M. Sun, X. Cheng, P. E. Mogensen, and X. Cai, “A mixed-bouncing based non-stationarity and consistency 6G V2V channel model with continuously arbitrary trajectory,” IEEE Transactions on Wireless Communications, vol. 23, no. 2, pp. 1634–1650, 2024.

[16] Z. Huang, L. Bai, X. Cheng, X. Yin, P. E. Mogensen, and X. Cai, “A non-stationary 6G V2V channel model with continuously arbitrary trajectory,” IEEE Transactions on Vehicular Technology, vol. 72, no. 1, pp. 4–19, January 2023.

[17] J. Chen, Q. Shi, and X. Cai*, “Coherent bandwidth and distance in an ultra-large-scale antenna array at 15 GHz (最佳会议论文提名奖),” in International Symposium on Antennas and Propagation (ISAP), 2024, pp. 1–2.

[18] G. Zhang, J. Nielsen, X. Cai*, G. F. Pedersen, and W. Fan, “Geometry-based clustering characteristics for outdoor measurements at 28–30 GHz,” IEEE Antennas and Wireless Propagation Letters, vol. 21, no. 9, pp. 1797–1801, 2022.

[19] X. Cai*, Y. Miao, J. Li, F. Tufvesson, G. F. Pedersen, and W. Fan, “Dynamic mmwave channel emulation in a cost-effective MPAC with dominant-cluster concept,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 6, pp. 4691–4704, June 2022.

[20] X. Cai, J. Song, J. Rodríguez-Piñeiro, P. E. Mogensen, and F. Tufvesson, “Characterizing the small-scale fading for low altitude UAV channels (最佳会议论文),” in The Seventeenth International Conference on Wireless and Mobile Communications (ICWMC), 2021, pp. 16–19.

[21] X. Cai*, G. Zhang, C. Zhang, W. Fan, J. Li, and G. F. Pedersen, “Dynamic channel modeling for indoor millimeter-wave propagation channels based on measurements,” IEEE Transactions on Communications, vol. 68, no. 9, pp. 5878–5891, 2020.

[22] X. Cai, B. Peng, X. Yin, and A. P. Yuste, “Hough-transform-based cluster identification and modeling for V2V channels based on measurements,” IEEE Transactions on Vehicular Technology, vol. 67, no. 5, pp. 3838–3852, 2018.

[23] X. Yin, X. Cai, X. Cheng, J. Chen, and M. Tian, “Empirical geometry-based random-cluster model for high-speed-train channels in UMTS networks,” IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 5, pp. 2850–2861, 2015.

[24] X. Cai, X. Yin, X. Cheng, and A. P. Yuste, “An empirical random-cluster model for subway channels based on passive measurements in UMTS,” IEEE Transactions on Communications, vol. 64, no. 8, pp. 3563–3575, 2016.

[25] J. Ebrahimizadeh, A. Madannejad, X. Cai, E. Vinogradov, and G. A. E. Vandenbosch,“RCS-based 3-D millimeter-wave channel modeling using quasi-deterministic ray tracing,”IEEE Transactions on Antennas and Propagation, vol. 72, no. 4, pp. 3596–3606, 2024.

[26] J. Ebrahimizadeh, V. Khorashadi-zadeh, X. Cai, F. Tufvesson, and G. A. Vandenbosch,“Millimeter-wave scattering from building facade: A simulation and verification study,” in 18th European Conference on Antennas and Propagation (EuCAP), 2024, pp. 1–5.

[27] H. Khosravi, X. Cai, and F. Tufvesson, “Experimental analysis of physical interacting objects of a building at mmwave frequencies (最佳学生论文提名奖),” in 18th European Conference on Antennas and Propagation (EuCAP), 2024, pp. 01–05.

[28] X. Li, X. Cai, E. Leitinger, and F. Tufvesson, “A belief propagation algorithm for multipath-based SLAM with multiple map features: A mmWave MIMO application,” in IEEE International Conference on Communications Workshops (ICC Workshops), 2024, pp. 269–275.

[29] G. Tian*, I. Yaman, M. Sandra, X. Cai*, L. Liu, and F. Tufvesson, “Deep-learning-based high-precision localization with massive MIMO,” IEEE Transactions on Machine Learning in Communications and Networking, vol. 2, pp. 19–33, 2024.

[30] G. Tian . Yaman, M. Sandra, X. Cai, L. Liu, and F. Tufvesson, “High-precision machine-learning based indoor localization with massive MIMO system,” in ICC 2023 - IEEE International Conference on Communications, 2023, pp. 3690–3695.

[31] G. Tian, D. Pjanić, X. Cai, B. Bernhardsson, and F. Tufvesson, “Attention-aided outdoor localization in commercial 5G NR systems,” IEEE Transactions on Machine Learning in Communications and Networking, vol. 2, pp. 1678–1692, 2024.

[32] G. Zhang, X. Cai*, J. Nielsen, G. F. Pedersen, and F. Tufvesson, “A scatterer localization method using large-scale antenna array systems (最佳会议论文提名奖),” in IEEE Conference on Antenna Measurements and Applications (CAMA), 2022, pp. 1–4.

[33] X. Ye, X. Yin, X. Cai, A. P. Yuste, and H. Xu, “Neural-network-assisted UE localization using radio-channel fingerprints in LTE networks,” IEEE Access, vol. 5, pp. 12 071–12 087, 2017.

[34] X. Cai*, I. Z. Kovacs, J. Wigard, R. Amorim, F. Tufvesson, and P. E. Mogensen, “Power allocation for uplink communications of massive cellular-connected UAVs,” IEEE Transactions on Vehicular Technology, vol. 72, no. 7, pp. 8797–8811, July 2023.

[35] A. Marinšek, X. Cai, L. De Strycker, F. Tufvesson, and L. Van der Perre, “Channel performance metrics and evaluation for XR head-mounted displays with mmWave arrays,” IEEE Transactions on Communications, pp. 1–1, 2024.

[36] G. Tian, X. Cai, T. Zhou, W. Wang, and F. Tufvesson, “Deep-learning based channel estimation for OFDM wireless communications (首届全国博士后青年科技人才扬子江论坛学术论文展示三等奖),” in IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC), 2022, pp. 1–5.

[37] X. Cai*, I. Z. Kovács, J. Wigard, and P. E. Mogensen, “A centralized and scalable uplink power control algorithm in low SINR scenarios,” IEEE Transactions on Vehicular Technology, vol. 70, no. 9, pp. 9583–9587, 2021.

主要科研项目:

(1) 瑞典林雪平-隆德信息技术卓越中心,瑞典国家项目,20240012,面向6G通感的上中频信道特征化,2024-08至2029-08,360万元,结题,主持

(2) 瑞典林雪平-隆德信息技术卓越中心,瑞典国家项目,20240016,通感一体化系统中多频段协作的高分辨率感知,2024-08至2029-08,360万元,结题,参与

(3) 瑞典政府创新体系机构,瑞典国家项目,下一代通信计算能力中心,2024-01至2028-12,3500万元,结题,参与

(4) 瑞典林雪平-隆德信息技术卓越中心,青年人才支持计划,2023-01至 2027-12,360万元,结题,主持

(5) 瑞典研究理事会,瑞典国家青年人才项目,2022-04691,打破太赫兹通信的障碍:理解6G无线电传播特性,2023-01至2026-12,280万元,结题,主持

(6) 瑞典克拉福德基金会,克拉福德基金会资助项目,20230746,亚太赫兹信道模型构建,2023-08至2025-08,75万元,结题,主持

(7) 瑞典隆德皇家学会 - 自然科学、医学和技术学院,皇家学会基金,50514728,太赫兹无线电信道的快速智能建模,2022-11至2024-11,17万元,结题,主持

(8) 欧盟委员会,玛丽居里学者基金,101059091,亚太赫兹大规模多入多出信道研究,2022-07至2024-07,150万元,结题,主持

(9) 诺基亚,诺基亚-奥尔堡大学合作研发项目,诺基亚贝尔实验室与奥尔堡大学5G和5G演进合作研发, 2020-04至2021-04,100万元,结题,参与